

Appendix F: Transport Statement

Binn Farm Solar & BESS

Trio Power Limited

UK House
5th Floor
164-182 Oxford Street
London
United Kingdom
W1D 1NN

Prepared by:

SLR Consulting Limited

The Tun, 4 Jackson's Entry, Edinburgh, EH8 8PJ

SLR Project No.: 405.065788.00001

16 December 2025

Revision: 01

Revision Record

Revision	Date	Prepared By	Checked By	Authorised By
01	16 October 2025	IL	GK	GK
	Click to enter a date.			
	Click to enter a date.			
	Click to enter a date.			
	Click to enter a date.			

Basis of Report

This document has been prepared by SLR Consulting Limited (SLR) with reasonable skill, care and diligence, and taking account of the timescales and resources devoted to it by agreement with Trio Power Limited (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

Table of Contents

1	Introduction	1
2	Existing Transport Network	3
3	Transport Aspects of Proposed Development	7
4	Measures to Manage Traffic	13
5	Conclusions	16

Tables in Text

Table 3.1: Estimated Vehicle Movements During Construction Period	12
---	----

Figures in Text

Figure 1.1: Location of Proposed Development	2
Figure 2.1: Core Path Network Around Proposed Development	4

Photos in Text

Photo 1: View Southwards on A912 at Millden Road	5
Photo 1: View Northwards on A912 at Millden Road	6
Photo 2: View of Existing Junction of Millden Road and A912.....	7
Photo 3: Articulated HGV Entering Millden Road from A912 to South.....	8
Photo 4: Articulated HGV Exiting Millden Road to A912 to South	8
Photo 4: Rigid HGV Exiting Millden Road to A912 to North.....	9

Appendices

Annex A	Passing Opportunities on Millden Road
Annex B	Drawings

1 Introduction

Background

1.1 Trio Power Limited (hereafter referred to as 'the Applicant'), is applying for permission to construct and operate a solar photovoltaic (PV) array and Battery Energy Storage System (BESS) development on land at Binn Farm (hereafter referred to as the 'Proposed Development') near Glenfarg in Perth & Kinross Council's (PKC's) area. The Proposed Development would be located on land to the east of the A912, as shown in **Graphic 1.1**, hereafter referred to as the 'Site'.

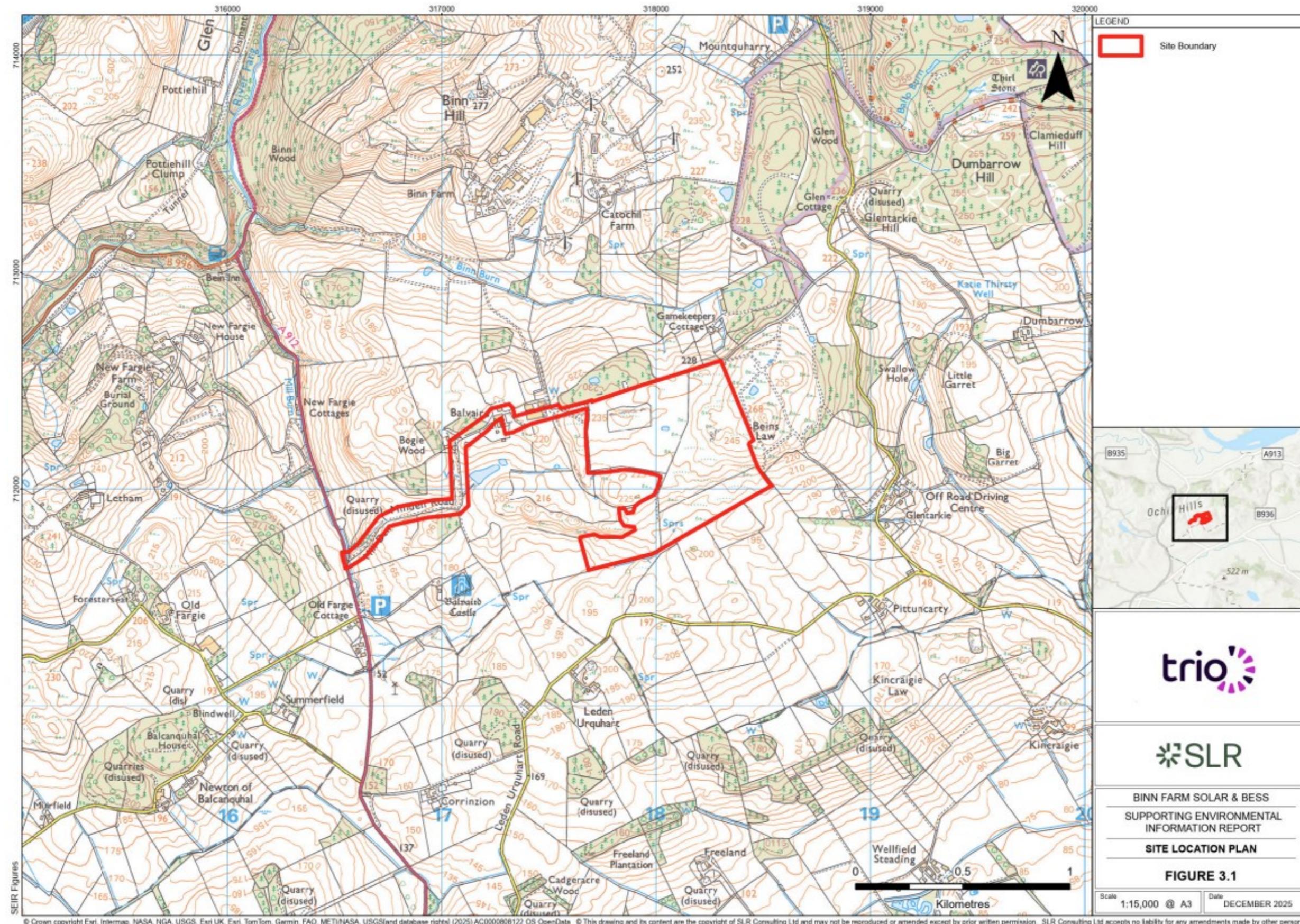
1.2 A formal Environmental Impact Assessment (EIA) Screening Opinion was requested from P&KC on 30 July 2025, and they issued a Screening Opinion (reference 25/01164/SCRN) on 30 August 2025 stating that an EIA was not required. P&KC provided pre-application advice regarding the Proposed Development (reference 25/00011/PREAPM) which stated the following regarding transport matters:

"The applicant is requested to provide a transport statement (TS) detailing the construction and operational impact of the development and the impact on the local road network – including any mitigation measures required. The applicant will be required to show that the vehicle access junction on the public road at the A912 is suitably formed to accommodate construction traffic. This includes suitable junction visibility splays. A construction traffic management plan (CTMP) will be required, detailing the construction traffic route from the M90 with swept path tracking for turning movements on local roads. The access track from the public road network will require suitable intervisible passing places at 100m intervals.

The applicant will be required to enter into a maintenance agreement under Section 96 of the Roads (Scotland) Act 1984 in respect of the agreed construction traffic routes. The agreement will formalise the inspection and maintenance regime specified by the Council as Roads Authority.

[...]

The internal site should demonstrate parking and turning facilities. Furthermore, all matters regarding access, vehicle parking and turning facilities, the road layout, design and specification (including the disposal of surface water), and waste management provision shall be in accordance with the standards required by the Council as Roads Authority (as detailed in the National Roads Development Guide) and to the satisfaction of the Planning Authority."


This Report

1.3 This report forms the Transport Statement and considers the transport aspects of the Proposed Development. After this introduction, this report has the following chapters:

- Section 2: describes the surrounding existing transport network.
- Section 3: describes the transport aspects of the Proposed Development.
- Section 4: summarises measures that could be included in a CTMP.
- Section 5: presents our conclusions.

Graphic 1.1: Location of Proposed Development

2 Existing Transport Network

Introduction

2.1 This section describes the location of the Proposed Development and the surrounding existing transport network. The transport network has been described following the hierarchy in National Planning Framework (NPF) 4, namely: walking, wheeling, cycling, public transport, taxis and shared transport, and private car.

Site Location

2.2 The Site of the Proposed Development is currently undeveloped farmland. It is bordered to the west by Balvaird Farm, which includes several agricultural and industrial-related buildings. The site is accessed by Millden Road, a private access track which meets the A912 around 1.4 km to the west. The boundary between P&KC's area and Fife Council's (FC's) area crosses the A912 around 510 m to the south of Millden Road.

Walking, Wheeling and Cycling

2.3 There are no footways on the A912 as it passes Millden Road nor are there any on Millden Road. The extract from P&KC's Core Path plan¹ in **Graphic 2.1** shows that there are no Core Paths crossing the site, nor are there any crossing the A912 or Millden Road. The nearest Core Path would be Core Paths ABNY/26 and ABNY/22 which are around 1.6 km to the east. There are no specific cycling facilities in the vicinity and the A912 does not form part of the National Cycle Network².

Public Transport

2.4 There are no scheduled bus services on the A912 in the vicinity of Millden Road. The nearest bus stops are at the junction of the A912 and B996 around 1.5 km to the north of where Millden Road meets the A912, which are served by an hourly service between Perth and Kinross.

¹ [Core Paths Plan - Perth & Kinross Council](#)

² [Detailed maps & routes to explore across the UK | OS Maps](#)

Graphic 2.1: Core Path Network Around Proposed Development

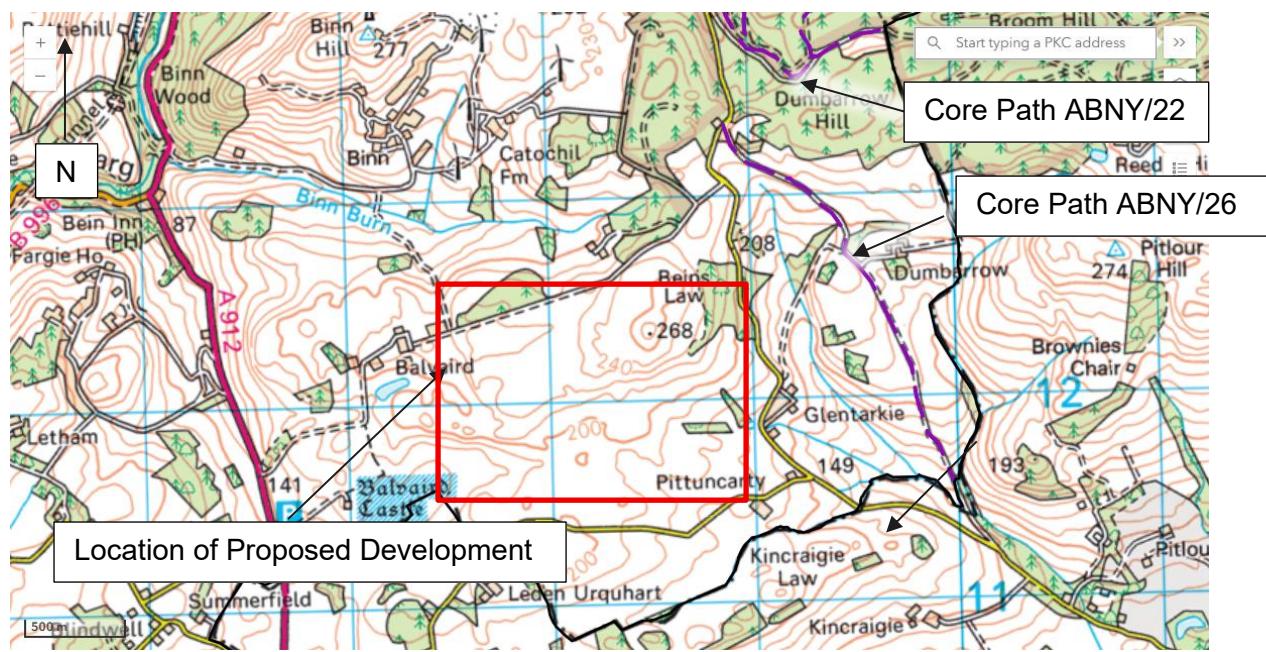


Image source: P&KC

Road Network

- 2.5 The A912 is a single carriageway road with one lane in each direction as shown in **Photo 1** and **Photo 2**. In the vicinity of Millden Road it is subject to a 60 mph speed limit (with lower limits applying for some vehicle types)³.
- 2.6 Millden Road is a single-track private access and does not form part of P&KC's public road network. There are several passing places and passing opportunities along it and photographs of these are provided in **Annex A**.
- 2.7 An Automatic Traffic Counter (ATC) survey was commissioned on the A912 around 160 m to the north of Millden Road. The ATC recorded speeds, vehicle types, and number of vehicle movements for a week from 15 September 2025.
- 2.8 Data from the ATC showed that during the average weekday 0700 – 1900 period there were 2,699 vehicle movements of which 513 were Heavy Goods Vehicles (HGVs). The 2,699 vehicle movements equate to an average of 225 vehicles per hour.
- 2.9 The 85th percentile speeds recorded by the survey were 51.7 mph northbound and 50.8 mph southbound. The observed 85th percentile speeds equate to a visibility splay of 160 m as per Table 8 of the National Roads Design Guidance (NRDG) .

³ [Speed limits - GOV.UK](#)

Photo 1: View Southwards on A912 at Millden Road

Image source: SLR

2.10 Data from the Department for Transport's Mapping Application for Visualising Road Injury Casualties (MAVRIC) tool⁴ shows no injury-causing accidents have been recorded on the A912 in the vicinity of Millden Road in the five years to the end of 2024 (the last full year for which data is available at the time of writing).

⁴ [MAVRIC](#)

Photo 2: View Northwards on A912 at Millden Road

Image source: SLR

3 Transport Aspects of Proposed Development

Introduction

3.1 This section describes the transport infrastructure that would be provided as part of the Proposed Development and presents an estimate of its likely transport demand.

Transport Infrastructure

3.2 A drawing showing the layout of the Proposed Development is provided in **Annex B**. The drawing shows that the solar panels would be located to the east of Balvaird Farm. Access would be from Millden Road at its existing junction with the A912 and a view of that junction is shown in **Photo 3**.

Photo 3: View of Existing Junction of Millden Road and A912

Image source: SLR

3.3 Large vehicles would be instructed to use the A912 to the south of Millden Road and use the A91 and M90 as required (turning at Junction 7 of the M90 if necessary). A video recording of the junction of the A912 and Millden Road was commissioned and stills from that video, shown in **Photo 4** and **Photo 5**, confirm that articulated HGVs are able to enter and exit Millden Road from and to the A912 to the south.

Photo 4: Articulated HGV Entering Millden Road from A912 to South

Image source: SLR

Photo 5: Articulated HGV Exiting Millden Road to A912 to South

Image source: SLR

3.4 Smaller vehicles would be able to enter and exit Millden Road to and from the A912 to the north and south. Those to and from the north would use the A912 to and from Junction 9 of the M90, whereas those to and from the south would use the A912 and A91 to and from Junction 8 of the M90. The still from the video in **Photo 6** demonstrates that a rigid HGV can exit Millden Road and turn northwards on the A912.

Photo 6: Rigid HGV Exiting Millden Road to A912 to North

Image source: SLR

- 3.5 Drawing 405-065788-00001-TRA-0001a in **Annex B** shows that a 160 m splay to the north would encroach into land to the west of the fence on the western side of the A912. The Applicant does not have control of that land and drawing 405-065788-00001-TRA-0001a also shows that 143 m is the maximum length of splay that could be provided without encroaching on the land to the west of the fence.
- 3.6 **Photo 2** shows that part of the land within the 143 m splay to north between the edge of the carriageway and the fence to west is overgrown. That vegetation would need to be cleared to provide the 143 m visibility splay.
- 3.7 The layout drawing in **Annex B** shows that a temporary construction compound would be provided. Sufficient temporary vehicle parking would be provided at this compound to cater for likely demand, and no parking would occur on Millden Road. Suitable temporary turning areas would be provided within the site during construction to allow vehicles to turn around and all vehicles would enter and leave the A912 in forward gear.
- 3.8 The access tracks within the operational layout would allow vehicles to turn internally and enter and leave Millden Road in forward gear.

Transport Demand

Construction

- 3.9 Construction of the Proposed Development would generate vehicle movements as staff travel to and from it and materials and items such as plant are delivered to and removed from it. All construction materials and components are expected to be delivered by HGVs complying with the Road Vehicles (Construction and Use) Regulations 1986 and no Abnormal Indivisible Load Vehicles (AILVs) are expected to be required.
- 3.10 Construction is expected to take 8 to 12 months. Working hours would likely be 0700 to 1900 Monday to Friday and 0800 to 1300 on Saturdays.
- 3.11 The number of vehicle movements during construction has been estimated based on the likely number of staff, volume of materials and items of plant and equipment that would be required

and on experience of other projects. The main elements that would generate vehicle movements are:

- Access tracks. Around 1,284 m of access tracks would be required, which equates to around 2,054m³ of material based on a typical width of 4 m and depth of 0.4 m. That volume of material equates to 257 HGV loads (based on 8 m³ per vehicle) and hence 514 HGV movements.
- A Temporary Construction Compound (TCC). The TCC would have an area of around 10,124m² and, assuming a depth of 0.4m, would need around 4,050 m³ of aggregate. That volume of material equates to around 506 HGV loads and 1,012 HGV movements.
- Battery Packs. The Proposed Development would require 48 battery packs to be delivered. Six packs could be accommodated on one HGV, meaning that there would be eight HGV deliveries and hence 16 HGV movements for these items.
- Inverters, frames, and panels. Eighty-six inverters and 54,796 panels would be required and around 100 loads of frames would be required. Four inverters could be accommodated per HGV, and 400 panels could be accommodated per HGV. There would therefore be around 22 loads of inverters, 137 loads of panels and 100 loads of frames, equating to 518 HGV movements.
- Substation and BESS. Hardstanding areas of approximately 240 m² and 2,507 m² would be constructed for the substation and BESS respectively. Each would be built to a depth of 0.40 m, which will require approximately 1,099 m³ of aggregate. That volume of material equates to 137 HGV loads (based on 8 m³ per vehicle) and hence 274 HGV movements. A further 30 HGV loads has been assumed for materials to be imported to form the foundations of the structure and internal electrical cabling, resulting in an additional 60 HGV movements.

3.12 The number of construction staff will vary through the construction period depending on the operations being undertaken. It is anticipated that 40 staff will be present each working day during the peak period of construction, reducing to 20 staff at other times. Many staff would likely share a vehicle, and for the purpose of this report it has been assumed that there would be an average of 1.5 staff per vehicle. There would therefore be around 27 staff vehicles arriving during each working day in the peak months and the same number departing, reducing to 13 arriving and 13 departing outwith the peak months.

3.13 Estimated vehicle movements during each month of the construction period are provided in **Table 3.1**. **Table 3.1** also presents estimated daily vehicle movements for each month of the construction period, based on there being 20 working days per month (i.e. four weeks per month of five working days) There would likely be more than 20 working days in any one month (given activities would take place between 0800 and 1300 on Saturdays) so the actual daily vehicle movements during construction would likely be lower than that shown in **Table 3.1**.

3.14 The data in **Table 3.1** shows that there would be a maximum of 67 vehicle movements (of which 13 would be HGVs) each working day during month five of the construction period. The maximum number of HGV movements (32) would occur in month two. There would be an average of 51 vehicle movements (of which 11 would be HGVs) each working day across the entire construction period.

3.15 The additional 67 vehicle movements during each working day during the busiest month of the construction period would represent an increase of 2.5% over the observed number of vehicle movements on the A912 (from **Paragraph 2.8**). However, in absolute terms, the increase would mean over nine minutes between each additional vehicle (on average over the working day). Such increases are unlikely to cause noticeable effects on other users of the A912 and the increases during the other months of the construction period would be lower.

3.16 The site management would require that contractors inform them of expected HGV arrival times. If an HGV was about to depart the site at around the time an HGV was due to arrive, then the departing HGV would be held within the site until the arrival HGV had entered the site to avoid two opposite-direction HGVs related to the Proposed Development meeting each other on Millden Road.

Table 3.1: Estimated Vehicle Movements During Construction Period

Activity	Vehicle Type	Vehicle Movements in Month ⁵											
		1	2	3	4	5	6	7	8	9	10	11	12
Site Mobilisation	HGV	40											
Miscellaneous Deliveries	HGV	10	10	10	10	10	10	10	10	10	10	10	10
Fuel	HGV	4	4	4	4	4	4	4	4	4	4	4	4
Compound	HGV	507	507										
Access Tracks	HGV		129	129	129	129							
Frames, Inverters and Storage Containers	HGV				72	72	72						
Substation and BESS	HGV				52	52	52	52	52	52			
Panels	HGV						46	46	46	46	46	46	
Battery Packs	HGV							4	4	4	4		
Site Demobilisation	HGV												40
Staff Movements	Car and LGVS	534	534	534	534	1,067	1,067	1,067	1,067	1,067	1,067	534	534
Total Vehicle Movements		1,095	1,183	676	800	1,334	1,251	1,183	1,183	1,183	1,130	594	588
Total HGV Movements		561	650	143	267	267	184	116	116	116	64	60	54
Total Car and LGV Movements		534	534	534	534	1,067	1,067	1,067	1,067	1,067	1,067	534	534
Average Vehicle Movements per Working Day		55	59	34	40	67	63	59	59	59	57	30	29
Average HGV Movements per Working Day		28	32	7	13	13	9	6	6	6	3	3	3
Average Car and LGV Movements per Working Day		27	27	27	27	53	53	53	53	53	27	27	27

⁵ A movement is an arrival or a departure. For example, a vehicle arriving, unloading and departing would represent two movements.

Operation

3.17 There would be fewer vehicle movements during operation than during construction, as once operational there would be only the occasional maintenance or inspection vehicle. There would likely be no more than a handful of such vehicle movements during any typical week, and they would typically be Light Goods Vehicles (LGVs) or pick-up trucks. There may be the occasional need for an HGV to visit once operational to, for example, replace a defective item.

Decommissioning

3.18 The Proposed Development would be decommissioned at the end of its operational life. Once decommissioned, the Site would be reinstated, and this would involve similar access requirements as the construction phase. The number of vehicle movements during decommissioning would likely be less than that generated during construction as some elements (such as sub-surface infrastructure) may be left in place after decommissioning.

4 Measures to Manage Traffic

Introduction

4.1 This section describes the measures proposed to manage construction-related traffic to and from the site of the Proposed Development. Full details of the construction would not be known until nearer the time of construction (should consent be granted) and once a Principal Contractor (PC) was appointed. Submission of a full CTMP by the PC prior to construction could be made a condition of any consent granted.

Parking and Turning

4.2 Suitable parking and turning facilities would be provided as described in **Paragraph 3.4**. A banksman would be employed to ensure that any vehicles that must reverse within the Site would do so under supervision. Heavy site traffic would be equipped with audible reversing warning equipment with additional visual aids (e.g. reversing cameras or mirrors) used on all plant. All safety features would be inspected daily with faults immediately reported and repaired.

Control of Mud and Debris

4.3 Wheel washing facilities would be provided during construction to reduce the risk of mud or debris being deposited on the A912. All relevant vehicles would be sheeted to limit the spread of dust.

Site Arrival Procedures

4.4 All non-staff vehicles arriving at the site would be required to report to site security where they would obtain clear instructions. The site speed limit would be 15 mph and speed limit signs would be erected within the site.

Travel Demand Measures

4.5 The PC would encourage car sharing among staff. When a new member of staff was appointed, the PC would put him or her in touch with others who live nearby to encourage car sharing. The PC would identify the feasibility of running a minibus to transport staff to and from the site.

Induction and Training

4.6 Staff would be made aware of the measures in the CTMP upon their induction. Contractors would be made aware of the measures in the CTMP when appointed and it would be a contractual requirement that they adhere to the CTMP measures. Adherence to the specific measures in this plan would be made a condition of the contract with all contractors and suppliers.

Traffic Signage

4.7 Temporary signage would be provided in the vicinity of the junction of the A912 and Millden Road to direct arriving vehicles towards the site.

Updating and Reviewing the CTMP

4.8 The PC would review this CTMP as the design and construction progresses and update the CTMP as necessary. The PC would nominate a member of staff to act as a liaison officer to be responsible for the co-ordination of all elements of transport during the construction

process. This person would provide their contact details to the local area roads officer in P&KC and the chairs of Abernethy and District and Glenfarg community councils. This would ensure that the local community has a direct point of contact to discuss matters relating to traffic management or site operation.

Dealing with Complaints

4.9 The PC would record all comments, complaints or queries received during the construction period. Any comments, complaints or queries which required a response would be replied to within five working days.

5 Conclusions

5.1 This report has considered the transport aspects of the Proposed Development. The report concludes that:

- The existing junction of the A912 and Millden Road accommodates HGVs and there are several existing passing opportunities on Millden Road.
- Construction is expected to last for 8 to 12 months and generate, at most, around 67 vehicle movements per working day.
- Those additional vehicle movements are unlikely to cause any noticeable effects on users of the A912 and HGV departures from the Site would be managed to reduce the risk of two opposing-direction HGVs meeting on Millden Road.
- Only the occasional maintenance and inspection vehicle would be generated once operational.
- Satisfactory submission of a CTMP could be made a condition of any consent granted. Measures that could be included in such a CTMP have been identified in this report.

Annex A Passing Opportunities on Millden Road

Appendix F: Transport Statement

Binn Farm Solar & BESS

Trio Power Limited

SLR Project No.: 405.065788.00001

16 December 2025

Passing Opportunity 1: approximately 25m east of A912

Passing Opportunity 2: approximately 50m east of A912

Passing Opportunity 3: approximately 280m east of A912

Passing Opportunity 4: approximately 490m east of A912

Passing Opportunity 5: approximately 600m east of A912

Passing Opportunity 6: approximately 770m east of A912

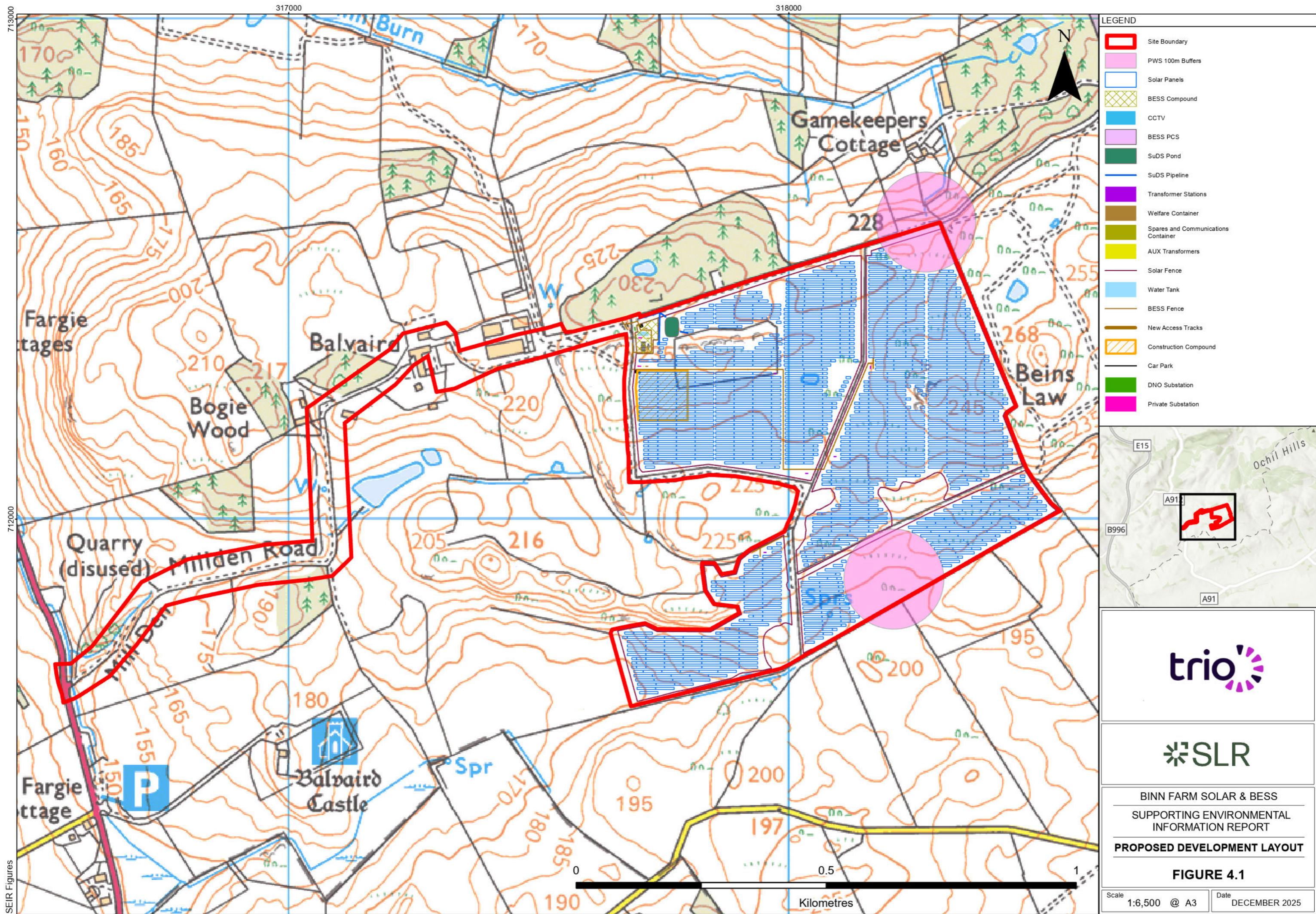
Passing Opportunity 7: approximately 980m east of A912

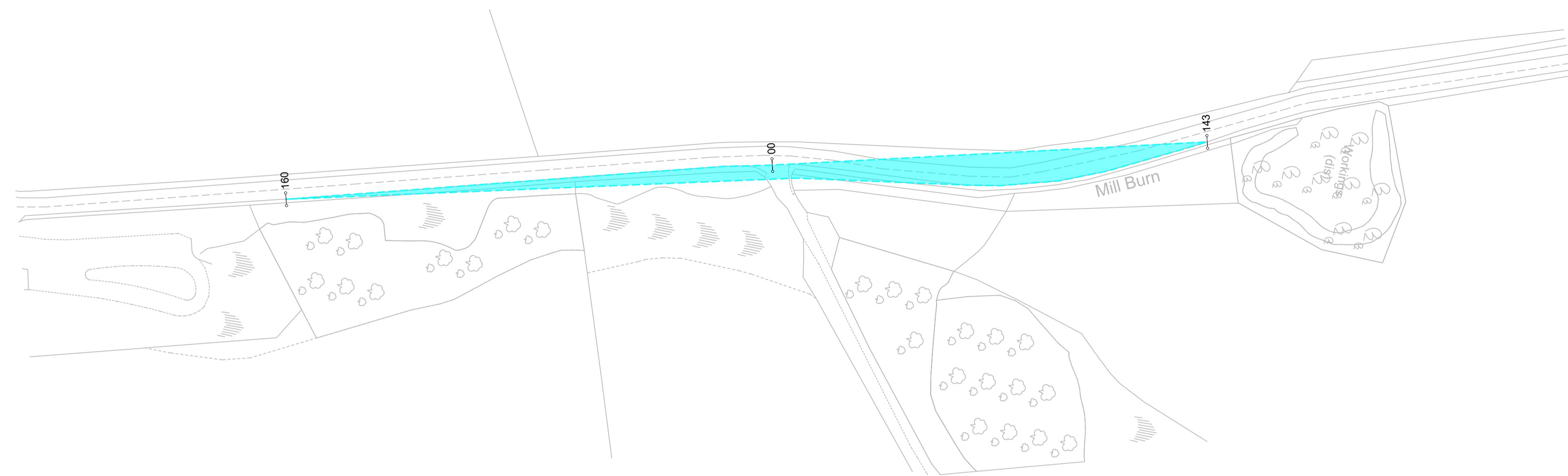
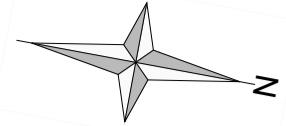
Passing Opportunity 8: approximately 1.1km east of A912

Passing Opportunity 9: Balvaird Farm

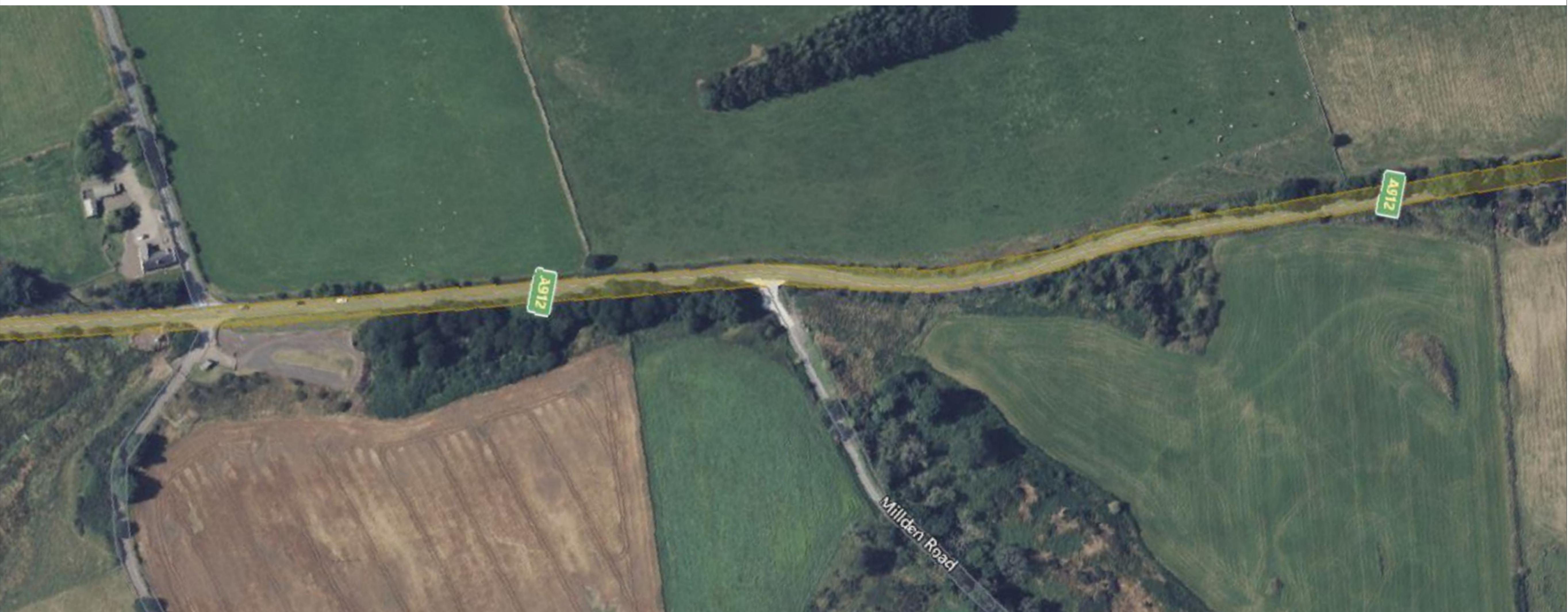
Annex B Drawings

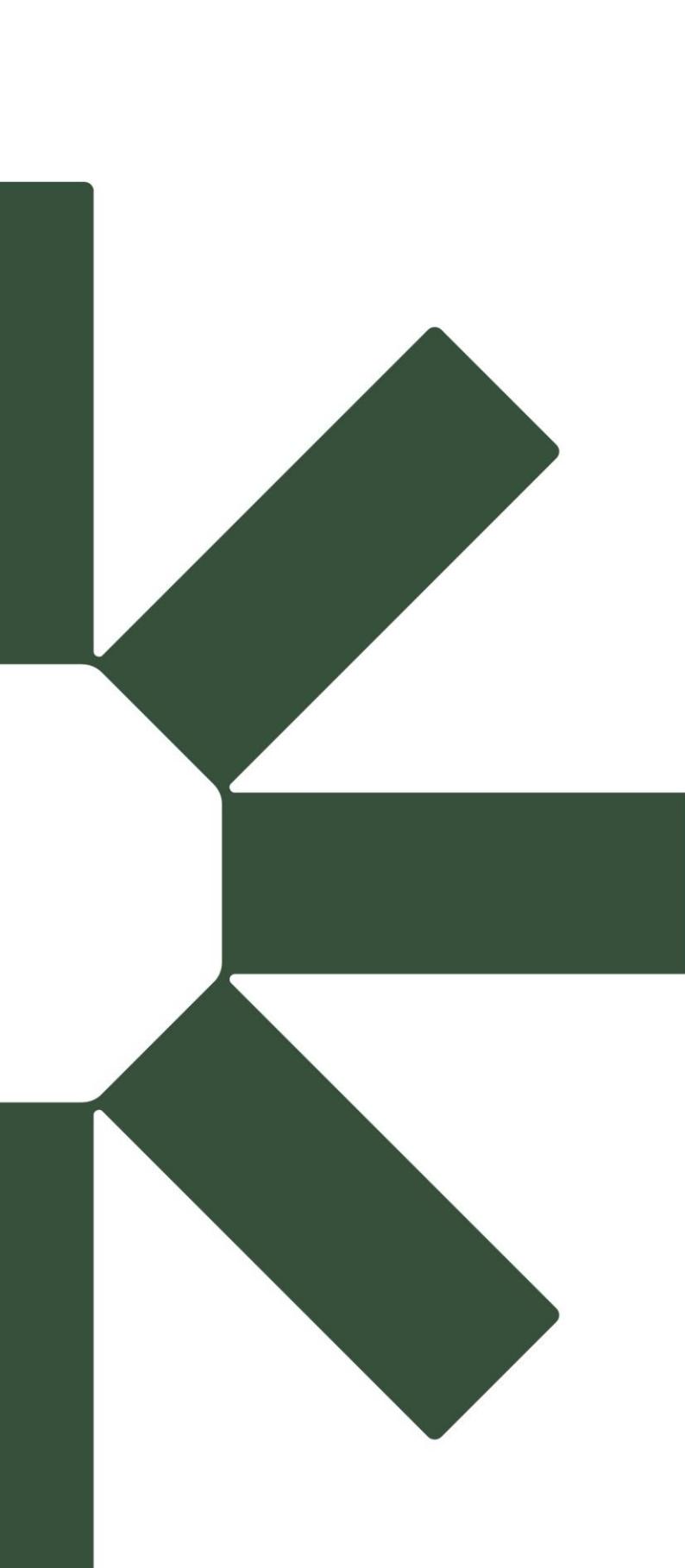
Appendix F: Transport Statement


Binn Farm Solar & BESS



Trio Power Limited

SLR Project No.: 405.065788.00001


16 December 2025



Scale 1:1,000

P02	Update	16/10/25	LB	IL	SC
P01	Initial Issue	18/07/25	LB	IL	SC
Rev	Amendments	Date	By	Chk	Auth
SLR					
www.slrconsulting.com					
Drawing Purpose					
Client					
Project					
Drawing Title					
Scale					
As shown	@ A1	SLR Project No.	405.065788.00001		
Designed	Drawn	Checked	Authorised		
N/A	LB	IL	SC		
Date	Date	Date	Date		
N/A	16/10/2025	16/10/2025	16/10/2025		
Drawing Number	405-065788-00001-TRA-0001a				Rev.
P02					

Making Sustainability Happen